Efficient AUC Maximization with Regularized Least-Squares
نویسندگان
چکیده
Area under the receiver operating characteristics curve (AUC) is a popular measure for evaluating the quality of binary classifiers, and intuitively, machine learning algorithms that maximize an approximation of AUC should have a good AUC performance when classifying new examples. However, designing such algorithms in the framework of kernel methods has proven to be challenging. In this paper, we address AUC maximization with the regularized least-squares (RLS) algorithm also known as the least-squares support vector machine. First, we introduce RLStype binary classifier that maximizes an approximation of AUC and has a closedform solution. Second, we show that this AUC-RLS algorithm is computationally as efficient as the standard RLS algorithm that maximizes an approximation of the accuracy. Third, we compare the performance of these two algorithms in the task of assigning topic labels for newswire articles in terms of AUC. Our algorithm outperforms the standard RLS in every classification experiment conducted. The performance gains are most substantial when the distribution of the class labels is unbalanced. In conclusion, modifying the RLS algorithm to maximize the approximation of AUC does not increase the computational complexity, and this alteration enhances the quality of the classifier.
منابع مشابه
Multiplicative Updates for L1-Regularized Linear and Logistic Regression
Multiplicative update rules have proven useful in many areas of machine learning. Simple to implement, guaranteed to converge, they account in part for the widespread popularity of algorithms such as nonnegative matrix factorization and Expectation-Maximization. In this paper, we show how to derive multiplicative updates for problems in L1-regularized linear and logistic regression. For L1–regu...
متن کاملRegularized Discriminant Analysis, Ridge Regression and Beyond
Fisher linear discriminant analysis (FDA) and its kernel extension—kernel discriminant analysis (KDA)—are well known methods that consider dimensionality reduction and classification jointly. While widely deployed in practical problems, there are still unresolved issues surrounding their efficient implementation and their relationship with least mean squares procedures. In this paper we address...
متن کاملAn Efficient Method for Large-Scale l1-Regularized Convex Loss Minimization
Convex loss minimization with l1 regularization has been proposed as a promising method for feature selection in classification (e.g., l1-regularized logistic regression) and regression (e.g., l1-regularized least squares). In this paper we describe an efficient interior-point method for solving large-scale l1-regularized convex loss minimization problems that uses a preconditioned conjugate gr...
متن کاملA Robust and Regularized Extreme Learning Machine
In a moment when the study of outlier robustness within Extreme Learning Machine is still in its infancy, we propose a method that combines maximization of the hidden layer’s information transmission, through Batch Intrinsic Plasticity (BIP), with robust estimation of the output weights. This method named R-ELM/BIP generates a reliable solution in the presence of corrupted data with a good gene...
متن کاملRetrieving Three Dimensional Displacements of InSAR Through Regularized Least Squares Variance Component Estimation
Measuring the 3D displacement fields provide essential information regarding the Earth crust interaction and the mantle rheology. The interferometric synthetic aperture radar (InSAR) has an appropriate capability in revealing the displacements of the Earth’s crust. Although, it measures the real 3D displacements in the line of sight (LOS) direction. The 3D displacement vectors can be retrieved ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008